Disaster Named Entity Recognizer

Disaster Named Entity Recognizer is a web application that performs named entity recognition in typhoon-related news articles. The application can identify the relevant information and classify into either of the six categories: Typhoon Name, Locations Affected, Affected, Casualties, Damage and Donations. Articles from Rappler and Inquirer was used to build a corpus of typhoon-related news articles for the training data. Stanford NER served as the main tool of the development of this application. Articles about typhoons were gathered from news portals via an article scraper built using PHP, the scraper is designed only for Rappler and Inquirer websites. This is to build a corpus of typhoon-related news articles. The gathered data are composed of articles on the onset of predetermined typhoons. The corpus was composed of 104 articles from Rappler and 75 articles from Inquirer with a total of 179 articles, all written in English language. The collection of articles didn’t particularly cover specific type of typhoons but mostly articles related to Typhoon Yolanda were included in the corpus since these articles contains loads of information that helps in training the model.

Tools Used:
Article Scraper – A web scraper built using PHP to collect news related articles. Designed only for Rappler and Inquirer.
Stanford NER CRF Classifier – NER system use to create the classifier model.

The Disaster NER tool can be found here.

Posts created 35

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Posts

Begin typing your search term above and press enter to search. Press ESC to cancel.

Back To Top